Image denoising by arithmetic means based on similarity

Yutaka Takagi, Masaaki Ikehara

研究成果: Conference contribution

抄録

In this paper, we propose a Non-Local Means algorithm-based denoising method. In conventional NLM, the weighting functions are acquired based on the similarity between target patch and its neighboring patches and then Gaussian-range kernel is calculated based on the similarity. Then, target patch is replaced by weighted means value of neighboring patches. In comparison, our method extracts similar patches by thresholding and only calculates simple arithmetic average. The method does not only outperform the conventional NLM but also implement with less computation. Finally, we compare the proposed and the conventional NLM, and validate the advantage.

本文言語English
ホスト出版物のタイトル2015 10th International Conference on Information, Communications and Signal Processing, ICICS 2015
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781467372183
DOI
出版ステータスPublished - 2016 4月 26
イベント10th International Conference on Information, Communications and Signal Processing, ICICS 2015 - Singapore, Singapore
継続期間: 2015 12月 22015 12月 4

出版物シリーズ

名前2015 10th International Conference on Information, Communications and Signal Processing, ICICS 2015

Other

Other10th International Conference on Information, Communications and Signal Processing, ICICS 2015
国/地域Singapore
CitySingapore
Period15/12/215/12/4

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • 情報システム
  • 信号処理

フィンガープリント

「Image denoising by arithmetic means based on similarity」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル