TY - GEN
T1 - Image Deraining with Frequency-Enhanced State Space Model
AU - Yamashita, Shugo
AU - Ikehara, Masaaki
N1 - Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025.
PY - 2025
Y1 - 2025
N2 - Removing rain degradations in images is recognized as a significant issue. In this field, deep learning-based approaches, such as Convolutional Neural Networks (CNNs) and Transformers, have succeeded. Recently, State Space Models (SSMs) have exhibited superior performance across various tasks in both natural language processing and image processing due to their ability to model long-range dependencies. This study introduces SSM to image deraining with deraining-specific enhancements and proposes a Deraining Frequency-Enhanced State Space Model (DFSSM). To effectively remove rain streaks, which produce high-intensity frequency components in specific directions, we employ frequency domain processing concurrently with SSM. Additionally, we develop a novel mixed-scale gated-convolutional block, which uses convolutions with multiple kernel sizes to capture various scale degradations effectively and integrates a gating mechanism to manage the flow of information. Finally, experiments on synthetic and real-world rainy image datasets show that our method surpasses state-of-the-art methods. Code is available at https://github.com/ShugoYamashita/DFSSM.
AB - Removing rain degradations in images is recognized as a significant issue. In this field, deep learning-based approaches, such as Convolutional Neural Networks (CNNs) and Transformers, have succeeded. Recently, State Space Models (SSMs) have exhibited superior performance across various tasks in both natural language processing and image processing due to their ability to model long-range dependencies. This study introduces SSM to image deraining with deraining-specific enhancements and proposes a Deraining Frequency-Enhanced State Space Model (DFSSM). To effectively remove rain streaks, which produce high-intensity frequency components in specific directions, we employ frequency domain processing concurrently with SSM. Additionally, we develop a novel mixed-scale gated-convolutional block, which uses convolutions with multiple kernel sizes to capture various scale degradations effectively and integrates a gating mechanism to manage the flow of information. Finally, experiments on synthetic and real-world rainy image datasets show that our method surpasses state-of-the-art methods. Code is available at https://github.com/ShugoYamashita/DFSSM.
KW - Deraining
KW - Image Restoration
KW - State Space Model
UR - http://www.scopus.com/inward/record.url?scp=85212979416&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85212979416&partnerID=8YFLogxK
U2 - 10.1007/978-981-96-0911-6_19
DO - 10.1007/978-981-96-0911-6_19
M3 - Conference contribution
AN - SCOPUS:85212979416
SN - 9789819609109
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 318
EP - 334
BT - Computer Vision – ACCV 2024 - 17th Asian Conference on Computer Vision, Proceedings
A2 - Cho, Minsu
A2 - Laptev, Ivan
A2 - Tran, Du
A2 - Yao, Angela
A2 - Zha, Hongbin
PB - Springer Science and Business Media Deutschland GmbH
T2 - 17th Asian Conference on Computer Vision, ACCV 2024
Y2 - 8 December 2024 through 12 December 2024
ER -