Image description generation without image processing using fuzzy inference

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

We propose a sentence generation method that describes images. We do not use image processing technique in our proposed method. Human annotated image tags are used as image information to generate sentence. By using human annotated tags, we think this enables to describe image more relevant and user specific. Our method uses Kyoto University's case frame data and Google N-gram to generate candidate sentences. We extend these candidates to describe images more relevant. To be more precise, we added segments with missing semantic role, and added modification segments. To select one output sentence, we used fuzzy rules to grade naturalness of candidate sentences. To grading image relevance of the sentence, we scored word similarity for each word. The performance of the proposed system has been evaluated by subjective experiments and obtained satisfactory results.

本文言語English
ホスト出版物のタイトル2012 IEEE International Conference on Fuzzy Systems, FUZZ 2012
DOI
出版ステータスPublished - 2012
イベント2012 IEEE International Conference on Fuzzy Systems, FUZZ 2012 - Brisbane, QLD, Australia
継続期間: 2012 6月 102012 6月 15

出版物シリーズ

名前IEEE International Conference on Fuzzy Systems
ISSN(印刷版)1098-7584

Other

Other2012 IEEE International Conference on Fuzzy Systems, FUZZ 2012
国/地域Australia
CityBrisbane, QLD
Period12/6/1012/6/15

ASJC Scopus subject areas

  • ソフトウェア
  • 理論的コンピュータサイエンス
  • 人工知能
  • 応用数学

フィンガープリント

「Image description generation without image processing using fuzzy inference」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル