TY - JOUR
T1 - Impact of cyclin B2 and cell division cycle 2 on tubular hyperplasia in progressive chronic renal failure rats
AU - Nishihara, Kumiko
AU - Masuda, Satohiro
AU - Nakagawa, Shunsaku
AU - Yonezawa, Atsushi
AU - Ichimura, Takaharu
AU - Bonventre, Joseph V.
AU - Inui, Ken Ichi
PY - 2010/4
Y1 - 2010/4
N2 - To clarify the specific molecular events of progressive tubular damage in chronic renal failure (CRF), we conducted microarray analyses using isolated proximal tubules from subtotally nephrectomized (Nx) rats as a model of CRF. Our results clearly demonstrated time-dependent changes in gene expression profiles localized to proximal tubules. The expression of mitosis-specific genes Cyclin B2 and Cell division cycle 2 (Cdc2) was significantly and selectively increased in the proximal tubules during the compensated period but decreased to basal level in the end-stage period. Administration of everolimus, a potent inhibitor of mammalian target of rapamycin, markedly reduced compensatory hypertrophy and hyperplasia of epithelial cells, which was accompanied by complete abolishment of the expression of Cyclin B2 and Cdc2 enhancement; renal function was then severely decreased. Treatment with the Cdc2 inhibitor 2-cyanoethyl alsterpaullone clearly decreased epithelial cell hyperplasia, based on staining of phosphorylated histone H3 and Ki-67, while hypertrophy was not inhibited. In conclusion, we have demonstrated roles of Cyclin B2 and Cdc2 in the epithelial hyperplasia in response to Nx. These results advance the knowledge of the contribution of cell cycle regulators, especially M phase, in pathophysiology of tubular restoration and/or degeneration, and these two molecules are suggested to be a marker for the proliferation of proximal tubular cells in CRF.
AB - To clarify the specific molecular events of progressive tubular damage in chronic renal failure (CRF), we conducted microarray analyses using isolated proximal tubules from subtotally nephrectomized (Nx) rats as a model of CRF. Our results clearly demonstrated time-dependent changes in gene expression profiles localized to proximal tubules. The expression of mitosis-specific genes Cyclin B2 and Cell division cycle 2 (Cdc2) was significantly and selectively increased in the proximal tubules during the compensated period but decreased to basal level in the end-stage period. Administration of everolimus, a potent inhibitor of mammalian target of rapamycin, markedly reduced compensatory hypertrophy and hyperplasia of epithelial cells, which was accompanied by complete abolishment of the expression of Cyclin B2 and Cdc2 enhancement; renal function was then severely decreased. Treatment with the Cdc2 inhibitor 2-cyanoethyl alsterpaullone clearly decreased epithelial cell hyperplasia, based on staining of phosphorylated histone H3 and Ki-67, while hypertrophy was not inhibited. In conclusion, we have demonstrated roles of Cyclin B2 and Cdc2 in the epithelial hyperplasia in response to Nx. These results advance the knowledge of the contribution of cell cycle regulators, especially M phase, in pathophysiology of tubular restoration and/or degeneration, and these two molecules are suggested to be a marker for the proliferation of proximal tubular cells in CRF.
KW - Cell cycle
KW - Hypertrophy
KW - Microarray
KW - Proximal tubule
UR - http://www.scopus.com/inward/record.url?scp=77950834144&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77950834144&partnerID=8YFLogxK
U2 - 10.1152/ajprenal.00567.2009
DO - 10.1152/ajprenal.00567.2009
M3 - Article
C2 - 20071461
AN - SCOPUS:77950834144
SN - 0363-6127
VL - 298
SP - F923-F934
JO - American Journal of Physiology - Renal Physiology
JF - American Journal of Physiology - Renal Physiology
IS - 4
ER -