Improved subspace classification method for multispectral Remote Sensing image classification

Hasl Bagan, Yoshikl Yamagata

研究成果: Article査読

21 被引用数 (Scopus)

抄録

This paper proposes a modified subspace classification method (mscm) that integrates an extended multiple similarity method with the averaged learning subspace method to achieve improved land-cover classification performance. Furthermore, we developed an automatic parameter selection and optimization technique for MSCM to avoid time-consuming, laborious manual parameter tuning. Only three parameters need to be set, and their optimal values are easily determined by the automatic procedure. We carried out experiments with data of two multispectral images: Landsat TM data for a semi-arid area in the Horqin sandy land, China, and ASTER data for the Kasumigaura Lake region, Japan, a high humidity, warm temperature zone. Accuracy assessment of the mscm results in comparison with those of the support vector machine (svm) and maximum likelihood classification (mlc) methods showed that the MSCM yielded better classification results. Therefore, the proposed MSCM shows promise as a tool for land-cover classification.

本文言語English
ページ(範囲)1239-1251
ページ数13
ジャーナルPhotogrammetric Engineering and Remote Sensing
76
11
DOI
出版ステータスPublished - 2010 11月
外部発表はい

ASJC Scopus subject areas

  • 地球科学におけるコンピュータ

フィンガープリント

「Improved subspace classification method for multispectral Remote Sensing image classification」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル