Inexact proximal DC Newton-type method for nonconvex composite functions

Shummin Nakayama, Yasushi Narushima, Hiroshi Yabe

研究成果: Article査読

3 被引用数 (Scopus)

抄録

We consider a class of difference-of-convex (DC) optimization problems where the objective function is the sum of a smooth function and a possibly nonsmooth DC function. The application of proximal DC algorithms to address this problem class is well-known. In this paper, we combine a proximal DC algorithm with an inexact proximal Newton-type method to propose an inexact proximal DC Newton-type method. We demonstrate global convergence properties of the proposed method. In addition, we give a memoryless quasi-Newton matrix for scaled proximal mappings and consider a two-dimensional system of semi-smooth equations that arise in calculating scaled proximal mappings. To efficiently obtain the scaled proximal mappings, we adopt a semi-smooth Newton method to inexactly solve the system. Finally, we present some numerical experiments to investigate the efficiency of the proposed method, which show that the proposed method outperforms existing methods.

本文言語English
ページ(範囲)611-640
ページ数30
ジャーナルComputational Optimization and Applications
87
2
DOI
出版ステータスPublished - 2024 3月

ASJC Scopus subject areas

  • 制御と最適化
  • 計算数学
  • 応用数学

フィンガープリント

「Inexact proximal DC Newton-type method for nonconvex composite functions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル