Inferring rules of Escherichia coli translational efficiency using an artificial neural network

Koya Mori, Rintaro Saito, Shinichi Kikuchi, Masaru Tomita

研究成果: Article査読

4 被引用数 (Scopus)


Although the machinery for translation initiation in Escherichia coli is very complicated, the translational efficiency has been reported to be predictable from upstream oligonucleotide sequences. Conventional models have difficulties in their generalization ability and prediction nonlinearity and in their ability to deal with a variety of input attributions. To address these issues, we employed structural learning by artificial neural networks to infer general rules for translational efficiency. The correlation between translational activities measured by biological experiments and those predicted by our method in the test data was significant (r = 0.78), and our method uncovered underlying rules of translational activities and sequence patterns from the obtained skeleton structure. The significant rules for predicting translational efficiency were (1) G- and A-rich oligonucleotide sequences, resembling the Shine-Dalgarno sequence, at positions -10 to -7; (2) first base A in the initiation codon; (3) transport/binding or amino acid metabolism gene function; (4) high binding energy between mRNA and 16S rRNA at positions -15 to -5. An additional inferred novel rule was that C at position -1 increases translational efficiency. When our model was applied to the entire genomic sequence of E. coli, translational activities of genes for metabolism and translational were significantly high.

出版ステータスPublished - 2007 9月

ASJC Scopus subject areas

  • 統計学および確率
  • モデリングとシミュレーション
  • 生化学、遺伝学、分子生物学(全般)
  • 応用数学


「Inferring rules of Escherichia coli translational efficiency using an artificial neural network」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。