TY - JOUR
T1 - Informative RNA base embedding for RNA structural alignment and clustering by deep representation learning
AU - Akiyama, Manato
AU - Sakakibara, Yasubumi
N1 - Publisher Copyright:
© 2022 The Author(s) 2022. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
PY - 2022/3/1
Y1 - 2022/3/1
N2 - Effective embedding is actively conducted by applying deep learning to biomolecular information. Obtaining better embeddings enhances the quality of downstream analyses, such as DNA sequence motif detection and protein function prediction. In this study, we adopt a pre-Training algorithm for the effective embedding of RNA bases to acquire semantically rich representations and apply this algorithm to two fundamental RNA sequence problems: structural alignment and clustering. By using the pre-Training algorithm to embed the four bases of RNA in a position-dependent manner using a large number of RNA sequences from various RNA families, a context-sensitive embedding representation is obtained. As a result, not only base information but also secondary structure and context information of RNA sequences are embedded for each base. We call this 'informative base embedding' and use it to achieve accuracies superior to those of existing state-of-The-Art methods on RNA structural alignment and RNA family clustering tasks. Furthermore, upon performing RNA sequence alignment by combining this informative base embedding with a simple Needleman-Wunsch alignment algorithm, we succeed in calculating structural alignments with a time complexity of O(n2) instead of the O(n6) time complexity of the naive implementation of Sankoff-style algorithm for input RNA sequence of length n.
AB - Effective embedding is actively conducted by applying deep learning to biomolecular information. Obtaining better embeddings enhances the quality of downstream analyses, such as DNA sequence motif detection and protein function prediction. In this study, we adopt a pre-Training algorithm for the effective embedding of RNA bases to acquire semantically rich representations and apply this algorithm to two fundamental RNA sequence problems: structural alignment and clustering. By using the pre-Training algorithm to embed the four bases of RNA in a position-dependent manner using a large number of RNA sequences from various RNA families, a context-sensitive embedding representation is obtained. As a result, not only base information but also secondary structure and context information of RNA sequences are embedded for each base. We call this 'informative base embedding' and use it to achieve accuracies superior to those of existing state-of-The-Art methods on RNA structural alignment and RNA family clustering tasks. Furthermore, upon performing RNA sequence alignment by combining this informative base embedding with a simple Needleman-Wunsch alignment algorithm, we succeed in calculating structural alignments with a time complexity of O(n2) instead of the O(n6) time complexity of the naive implementation of Sankoff-style algorithm for input RNA sequence of length n.
UR - http://www.scopus.com/inward/record.url?scp=85126352909&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85126352909&partnerID=8YFLogxK
U2 - 10.1093/nargab/lqac012
DO - 10.1093/nargab/lqac012
M3 - Article
AN - SCOPUS:85126352909
SN - 2631-9268
VL - 4
JO - NAR Genomics and Bioinformatics
JF - NAR Genomics and Bioinformatics
IS - 1
M1 - lqac012
ER -