Investigation of tio2 thin film growth by layer-by-layer self-assembly for application to optical devices

Kyu Hong Kyung, Kouji Fujimoto, Seimei Shiratori, Jin Ho Kim, Sae Hoon Kim

研究成果: Article査読

1 被引用数 (Scopus)


Recently, optical thin films fabricated using a water-based process have been strongly demanded. We fabricated TiO2 thin films consisting of poly(diallyl dimethyl ammonium chloride) (PDDA) and titanium(IV) bis(ammonium lactate) dihydroxide (TALH) for optical devices fabricated using layer-by-layer self-assembly. We report the effects of the pH and concentration of a solution, immersion time, and the amount of NaCl added to a solution on the thickness, morphology, surface roughness, and transmittance of fabricated thin films. The thickness, surface morphology, and transparency of (PDDA/TALH) thin films were determined by ellipsometry, field-emission scanning microscopy (FE-SEM), atomic force microscopy (AFM), and ultraviolet-visible (UV-vis) spectrometry. It was found that the thickness and surface morphology of (PDDA/TALH) multilayer films can be controlled by adjusting the TiO2 particle size of TALH solution. TiO2 particle size was controlled by adjusting the pH of TALH solution and the concentration of PDDA solution, and by adding NaCl to PDDA solution. It was found that we can increase deposition speed while maintaining optical quality by suppressing the surface roughness within 10 nm. These experimental results showed that the fabrication speed of thin films can be markedly increased, by approximately 6-fold.

ジャーナルJapanese journal of applied physics
4 PART 1
出版ステータスPublished - 2010 4月

ASJC Scopus subject areas

  • 工学一般
  • 物理学および天文学一般


「Investigation of tio2 thin film growth by layer-by-layer self-assembly for application to optical devices」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。