Krylov-proportionate adaptive filtering techniques not limited to sparse systems

研究成果: Article査読

36 被引用数 (Scopus)

抄録

This paper proposes a novel adaptive filtering scheme named the Krylov-proportionate normalized least-mean-square (KPNLMS) algorithm. KPNLMS exploits the benefits (i.e., fast convergence for sparse unknown systems) of the proportionate NLMS algorithm, but its applications are not limited to sparse unknown systems. A set of orthonormal basis vectors is generated from a certain Krylov sequence. It is proven that the unknown system is sparse with respect to the basis vectors in case of fairly uncorrelated input data. Different adaptation gain is allocated to a coefficient of each basis vector, and the gain is roughly proportional to the absolute value of the corresponding coefficient of the current estimate. KPNLMS enjoys i) fast convergence, ii) linear complexity per iteration, and iii) no use of any a priori information. Numerical examples demonstrate significant advantages of the proposed scheme over the reduced-rank method based on the multistage Wiener filter (MWF) and the transform-domain adaptive filter (TDAF) both in noisy and silent situations.

本文言語English
ページ(範囲)927-943
ページ数17
ジャーナルIEEE Transactions on Signal Processing
57
3
DOI
出版ステータスPublished - 2009 3月 10
外部発表はい

ASJC Scopus subject areas

  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「Krylov-proportionate adaptive filtering techniques not limited to sparse systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル