Large deviation principle for arithmetic functions in continued fraction expansion

研究成果: Article査読

2 被引用数 (Scopus)

抄録

Khinchin proved that the arithmetic mean of the regular continued fraction digits of Lebesgue almost every irrational number in (0, 1) diverges to infinity. Hence, none of the classical limit theorems such as the weak and strong laws of large numbers or central limit theorems hold. Nevertheless, we prove the existence of a large deviations rate function which estimates exponential probabilities with which the arithmetic mean of digits stays away from infinity. This leads us to a contradiction to the widely-shared view that the large deviation principle is a refinement of laws of large numbers: the former can be more universal than the latter.

本文言語English
ページ(範囲)137-152
ページ数16
ジャーナルMonatshefte fur Mathematik
190
1
DOI
出版ステータスPublished - 2019 9月 1

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Large deviation principle for arithmetic functions in continued fraction expansion」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル