Large deviation principle for S-unimodal maps with flat critical points

Yong Moo Chung, Hiroki Takahasi

研究成果: Article査読

抄録

We study a topologically exact, negative Schwarzian unimodal map without neutral periodic points whose critical point is non-recurrent and flat. Assuming that the critical order is polynomial or logarithmic, we establish the large deviation principle and provide a partial description of the minimizers of the rate function. We apply our main results to a certain parametrized family of unimodal maps in the same topological conjugacy class, and determine the sets of minimizers.

本文言語English
ページ(範囲)129-150
ページ数22
ジャーナルJournal of the Mathematical Society of Japan
74
1
DOI
出版ステータスPublished - 2022

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Large deviation principle for S-unimodal maps with flat critical points」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル