Localization transition of d-friendly walkers

Hideki Tanemura, Nobuo Yoshida

研究成果: Article査読

4 被引用数 (Scopus)

抄録

Friendly walkers is a stochastic model obtained from independent one-dimensional simple random walks {Sjk}j≥0, k = 1, 2,..., d by introducing "non-crossing condition": Sj1 ≤ Sj2 ≤ ... ≤ Sjd, j = 1,2, ..., n and "reward for collisions" characterized by parameters β2, ..., βd ≥ 0. Here, the reward for collisions is described as follows. If, at a given time n, a site in ℤ is occupied by exactly m ≥ 2 walkers, then the site increases the probabilistic weight for the walkers by multiplicative factor exp(βm) ≥ 1. We study the localization transition of this model in terms of the positivity of the free energy and describe the location and the shape of the critical surface in the (d - 1)-dimensional space for the parameters (β2,..., βd).

本文言語English
ページ(範囲)593-608
ページ数16
ジャーナルProbability Theory and Related Fields
125
4
DOI
出版ステータスPublished - 2003 4月
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 統計学および確率
  • 統計学、確率および不確実性

フィンガープリント

「Localization transition of d-friendly walkers」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル