Locally adaptive Bayesian isotonic regression using half shrinkage priors

Ryo Okano, Yasuyuki Hamura, Kaoru Irie, Shonosuke Sugasawa

研究成果: Article査読

抄録

Isotonic regression or monotone function estimation is a problem of estimating function values under monotonicity constraints, which appears naturally in many scientific fields. This paper proposes a new Bayesian method with global–local shrinkage priors for estimating monotone function values. Specifically, we introduce half shrinkage priors for positive valued random variables and assign them for the first-order differences of function values. We also develop fast and simple Gibbs sampling algorithms for full posterior analysis. By incorporating advanced shrinkage priors, the proposed method is adaptive to local abrupt changes or jumps in target functions. We show this adaptive property theoretically by proving that the posterior mean estimators are robust to large differences and that asymptotic risk for unchanged points can be improved. Finally, we demonstrate the proposed methods through simulations and applications to a real data set.

本文言語English
ページ(範囲)109-141
ページ数33
ジャーナルScandinavian Journal of Statistics
51
1
DOI
出版ステータスPublished - 2024 3月
外部発表はい

ASJC Scopus subject areas

  • 統計学および確率
  • 統計学、確率および不確実性

フィンガープリント

「Locally adaptive Bayesian isotonic regression using half shrinkage priors」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル