Maternal diabetes induces senescence and neural tube defects sensitive to the senomorphic rapamycin

Cheng Xu, Wei Bin Shen, E. Albert Reece, Hidetoshi Hasuwa, Christopher Harman, Sunjay Kaushal, Peixin Yang

研究成果: Article査読

21 被引用数 (Scopus)

抄録

Neural tube defects (NTDs) are the second most common structural birth defect. Senescence, a state of permanent cell cycle arrest, occurs only after neural tube closure. Maternal diabetes–induced NTDs are severe diabetic complications that lead to infant mortality or lifelong morbidity and may be linked to premature senescence. Here, we report that premature senescence occurs in the mouse neuroepithelium and disrupts neurulation, leading to NTDs in diabetic pregnancy. Premature senescence and NTDs were abolished by knockout of the transcription factor Foxo3a, the miR-200c gene, and the cell cycle inhibitors p21 and p27; transgenic expression of the dominant-negative FoxO3a mutant; or the senomorphic rapamycin. Double transgenic expression of p21 and p27 mimicked maternal diabetes in inducing premature neuroepithelium senescence and NTDs. These findings integrate transcription- and epigenome-regulated miRNAs and cell cycle regulators in premature neuroepithelium senescence and provide a mechanistic basis for targeting premature senescence and NTDs using senomorphics.

本文言語English
論文番号eabf5089
ジャーナルScience Advances
7
27
DOI
出版ステータスPublished - 2021 6月

ASJC Scopus subject areas

  • 一般

フィンガープリント

「Maternal diabetes induces senescence and neural tube defects sensitive to the senomorphic rapamycin」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル