Merging multiple omics datasets in silico: Statistical analyses and data interpretation

研究成果: Chapter

20 被引用数 (Scopus)

抄録

By the combinations of high-throughput analytical technologies in the fields of transcriptomics, proteomics, and metabolomics, we are now able to gain comprehensive and quantitative snapshots of the intracellular processes. Dynamic intracellular activities and their regulations can be elucidated by systematic observation of these multi-omics data. On the other hand, careful statistical analysis is necessary for such integration, since each of the omics layers as well as the specific analytical methodologies harbor different levels of noise and variations. Moreover, interpretation of such multitude of data requires an intuitive pathway context. Here we describe such statistical methods for the integration and comparison of multiomics data, as well as the computational methods for pathway reconstruction, ID conversion, mapping, and visualization that play key roles for the efficient study of multi-omics information.

本文言語English
ホスト出版物のタイトルSystems Metabolic Engineering
ホスト出版物のサブタイトルMethods and Protocols
出版社Humana Press Inc.
ページ459-470
ページ数12
ISBN(印刷版)9781627032988
DOI
出版ステータスPublished - 2013

出版物シリーズ

名前Methods in Molecular Biology
985
ISSN(印刷版)1064-3745

ASJC Scopus subject areas

  • 分子生物学
  • 遺伝学

フィンガープリント

「Merging multiple omics datasets in silico: Statistical analyses and data interpretation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル