TY - JOUR
T1 - Molecular doping effect in bottom-gate, bottom-contact pentacene thin-film transistors
AU - Wakatsuki, Yusuke
AU - Noda, Kei
AU - Wada, Yasuo
AU - Toyabe, Toru
AU - Matsushige, Kazumi
N1 - Funding Information:
This study was partly supported by Global Center of Excellence (G-COE) program of the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). The authors thank the supports from the “Toyo University Nanotechnology Network,” which comprises the “Nanotechnology Network Japan” by MEXT.
PY - 2011/9/1
Y1 - 2011/9/1
N2 - A bottom-gate, bottom-contact (BGBC) organic thin-film transistor (OTFT) with carrier-doped regions over source-drain electrodes was investigated. Device simulation with our originally developed device simulator demonstrates that heavily doped layers (p+ layers) on top of the source-drain contact region can compensate the deficiency of charge carriers at the source-channel interface during transistor operation, leading to the increase of the drain current and the apparent field-effect mobility. The phenomena expected with the device simulation were experimentally confirmed in typical BGBC pentacene thin-film transistors. The 5-nm-thick p+ layers, located 10 nm (or 20 nm) over the source-drain electrodes, were prepared by coevaporation of pentacene and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane as an acceptor dopant. Since the molecular doping in this study can increase the drain current without positive shift of threshold voltage, p+ layers were formed precisely on top of the source-drain regions. This study shows that common inferior characteristics of bottom-contact OTFT devices mainly derive from the supply shortage of charge carriers to the channel region. The importance of reliable molecular doping techniques or heavily doped semiconductor materials for improving OTFT device performance is clearly suggested.
AB - A bottom-gate, bottom-contact (BGBC) organic thin-film transistor (OTFT) with carrier-doped regions over source-drain electrodes was investigated. Device simulation with our originally developed device simulator demonstrates that heavily doped layers (p+ layers) on top of the source-drain contact region can compensate the deficiency of charge carriers at the source-channel interface during transistor operation, leading to the increase of the drain current and the apparent field-effect mobility. The phenomena expected with the device simulation were experimentally confirmed in typical BGBC pentacene thin-film transistors. The 5-nm-thick p+ layers, located 10 nm (or 20 nm) over the source-drain electrodes, were prepared by coevaporation of pentacene and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane as an acceptor dopant. Since the molecular doping in this study can increase the drain current without positive shift of threshold voltage, p+ layers were formed precisely on top of the source-drain regions. This study shows that common inferior characteristics of bottom-contact OTFT devices mainly derive from the supply shortage of charge carriers to the channel region. The importance of reliable molecular doping techniques or heavily doped semiconductor materials for improving OTFT device performance is clearly suggested.
UR - http://www.scopus.com/inward/record.url?scp=80052960185&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80052960185&partnerID=8YFLogxK
U2 - 10.1063/1.3627240
DO - 10.1063/1.3627240
M3 - Article
AN - SCOPUS:80052960185
SN - 0021-8979
VL - 110
JO - Journal of Applied Physics
JF - Journal of Applied Physics
IS - 5
M1 - 054505
ER -