More Direct and stage-wise network for Face Super Resolution

Yohei Horiguchi, Masaaki Ikehara, Kei Shibasaki

研究成果: Conference contribution

抄録

In recent years, U-net-based models have demonstrated high performance in high-magnification face super resolution (FSR) tasks and are capable of outputting more vivid super resolution (SR) images. However, this model has some drawbacks, such as the possibility of unnecessary computations and uniform block selection at all stages of the decoder. Therefore, we propose a Direct and Stage-wise (DS) Net, which improves on CTCNet [1], a U-net based model with high qualitative results. This model outperforms previous networks by eliminating encoders to reduce computational waste, and by focusing on global feature extraction in the small tensor size stage.

本文言語English
ホスト出版物のタイトルAPSIPA ASC 2024 - Asia Pacific Signal and Information Processing Association Annual Summit and Conference 2024
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9798350367331
DOI
出版ステータスPublished - 2024
イベント2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2024 - Macau, China
継続期間: 2024 12月 32024 12月 6

出版物シリーズ

名前APSIPA ASC 2024 - Asia Pacific Signal and Information Processing Association Annual Summit and Conference 2024

Conference

Conference2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2024
国/地域China
CityMacau
Period24/12/324/12/6

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ サイエンスの応用
  • ハードウェアとアーキテクチャ
  • 信号処理

フィンガープリント

「More Direct and stage-wise network for Face Super Resolution」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル