More on Convergence of Chorin’s Projection Method for Incompressible Navier–Stokes Equations

Masataka Maeda, Kohei Soga

研究成果: Article査読

抄録

Kuroki–Soga (Numer. Math. 146:401–433, 2020) proved that Chorin’s fully discrete finite difference projection method, originally introduced by Chorin (Math. Comput. 23:341–353, 1969), is unconditionally solvable and convergent within an arbitrary fixed time interval to a Leray–Hopf weak solution of the incompressible Navier–Stokes equations on a bounded domain with an arbitrary external force. This paper is a continuation of Kuroki–Soga’s work to further exhibit mathematical aspects of the method. We show time-global solvability and convergence of the scheme; L2-error estimates for the scheme in the class of smooth exact solutions; application of the method to the problem with a time-periodic external force to investigate time-periodic (Leray–Hopf weak) solutions, long-time behaviors, error estimates, etc.

本文言語English
論文番号41
ジャーナルJournal of Mathematical Fluid Mechanics
24
2
DOI
出版ステータスPublished - 2022 5月

ASJC Scopus subject areas

  • 数理物理学
  • 凝縮系物理学
  • 計算数学
  • 応用数学

フィンガープリント

「More on Convergence of Chorin’s Projection Method for Incompressible Navier–Stokes Equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル