Multi-Mems Differential Pressure Sensor Elements-Based Airflow Sensor with Neural Network Model

Kotaro Haneda, Kenei Matsudaira, Hidetoshi Takahashi

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

This paper reports a compact spherical airflow sensor using multi-MEMS differential pressure (DP) sensor elements. Three built-in MEMS sensors simultaneously measure the DP around the spherical housing structure so that the measured DPs are converted into 2D wind direction and speed. The sensor outputs are converted into wind direction and speed by neural network. We attached the calibrated sensor to a toy drone as a demonstration. Then, it was confirmed that the output corresponding to wind direction and speed was measured when a crosswind was applied during flight.

本文言語English
ホスト出版物のタイトル2023 IEEE 36th International Conference on Micro Electro Mechanical Systems, MEMS 2023
出版社Institute of Electrical and Electronics Engineers Inc.
ページ499-502
ページ数4
ISBN(電子版)9781665493086
DOI
出版ステータスPublished - 2023
イベント36th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2023 - Munich, Germany
継続期間: 2023 1月 152023 1月 19

出版物シリーズ

名前Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
2023-January
ISSN(印刷版)1084-6999

Conference

Conference36th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2023
国/地域Germany
CityMunich
Period23/1/1523/1/19

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学
  • 機械工学
  • 電子工学および電気工学

フィンガープリント

「Multi-Mems Differential Pressure Sensor Elements-Based Airflow Sensor with Neural Network Model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル