Multi-objective differential evolution algorithm for stochastic system identification

Zhou Jin, Akira Mita, Li Rongshuai

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

The last decade has witnessed rapid developments in structural system identification methodologies based on intelligent algorithms, which are formulated as multi-modal optimization problems. However, these deterministic methods more or less ignore uncertainties, such as modeling errors and measurement errors, that are inevitably involved in the system identification problem of civil-engineering structures. A new stochastic structural identification method is proposed that takes into account parametric uncertainties in the parameters of building structures. The proposed method merges the advantages of the multi-objective differential evolution optimization algorithm for the non-domination selection strategy and the probability density evolution method for incorporating parametric uncertainties. The results of simulations on identifying the unknown parameters of a structural system demonstrate the feasibility and effectiveness of the proposed method.

本文言語English
ホスト出版物のタイトルSensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2013
DOI
出版ステータスPublished - 2013 6月 12
イベント2013 SPIE Conference on Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2013 - San Diego, CA, United States
継続期間: 2013 3月 102013 3月 14

出版物シリーズ

名前Proceedings of SPIE - The International Society for Optical Engineering
8692
ISSN(印刷版)0277-786X

Other

Other2013 SPIE Conference on Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2013
国/地域United States
CitySan Diego, CA
Period13/3/1013/3/14

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学
  • コンピュータ サイエンスの応用
  • 応用数学
  • 電子工学および電気工学

フィンガープリント

「Multi-objective differential evolution algorithm for stochastic system identification」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル