MULTI-STAGE FEATURE ALIGNMENT NETWORK FOR VIDEO SUPER-RESOLUTION

Keito Suzuki, Masaaki Ikehara

研究成果: Conference contribution

抄録

Video super-resolution aims at generating high-resolution video frames using multiple adjacent low-resolution frames. An important aspect of video super-resolution is the alignment of neighboring frames to the reference frame. Previous methods directly align the frames either using optical flow or deformable convolution. However, directly estimating the motion from low-resolution inputs is hard since they often contain blur and noise that hinder the image quality. To address this problem, we propose to conduct feature alignment across multiple stages to more accurately align the frames. Furthermore, to fuse the aligned features, we introduce a novel Attentional Feature Fusion Block that applies a spatial attention mechanism to avoid areas with occlusion or misalignment. Experimental results show that the proposed method achieves competitive performance to other state-of-the-art super-resolution methods while reducing the network parameters.

本文言語English
ホスト出版物のタイトル2022 IEEE International Conference on Image Processing, ICIP 2022 - Proceedings
出版社IEEE Computer Society
ページ2001-2005
ページ数5
ISBN(電子版)9781665496209
DOI
出版ステータスPublished - 2022
イベント29th IEEE International Conference on Image Processing, ICIP 2022 - Bordeaux, France
継続期間: 2022 10月 162022 10月 19

出版物シリーズ

名前Proceedings - International Conference on Image Processing, ICIP
ISSN(印刷版)1522-4880

Conference

Conference29th IEEE International Conference on Image Processing, ICIP 2022
国/地域France
CityBordeaux
Period22/10/1622/10/19

ASJC Scopus subject areas

  • ソフトウェア
  • コンピュータ ビジョンおよびパターン認識
  • 信号処理

フィンガープリント

「MULTI-STAGE FEATURE ALIGNMENT NETWORK FOR VIDEO SUPER-RESOLUTION」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル