Multi-view Contrastive Multiple Knowledge Graph Embedding for Knowledge Completion

Mori Kurokawa, Kei Yonekawa, Shuichiro Haruta, Tatsuya Konishi, Hideki Asoh, Chihiro Ono, Masafumi Hagiwara

研究成果: Conference contribution

抄録

Knowledge graphs (KGs) are useful information sources to make machine learning efficient with human knowledge. Since KGs are often incomplete, KG completion has become an important problem to complete missing facts in KGs. Whereas most of the KG completion methods are conducted on a single KG, multiple KGs can be effective to enrich embedding space for KG completion. However, most of the recent studies have concentrated on entity alignment prediction and ignored KG-invariant semantics in multiple KGs that can improve the completion performance. In this paper, we propose a new multiple KG embedding method composed of intra-KG and inter-KG regularization to introduce KG-invariant semantics into KG embedding space using aligned entities between related KGs. The intra-KG regularization adjusts local distance between aligned and not-aligned entities using contrastive loss, while the inter-KG regularization globally correlates aligned entity embeddings between KGs using multi-view loss. Our experimental results demonstrate that our proposed method combining both regularization terms largely outperforms existing baselines in the KG completion task.

本文言語English
ホスト出版物のタイトルProceedings - 21st IEEE International Conference on Machine Learning and Applications, ICMLA 2022
編集者M. Arif Wani, Mehmed Kantardzic, Vasile Palade, Daniel Neagu, Longzhi Yang, Kit-Yan Chan
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1412-1418
ページ数7
ISBN(電子版)9781665462839
DOI
出版ステータスPublished - 2022
イベント21st IEEE International Conference on Machine Learning and Applications, ICMLA 2022 - Nassau, Bahamas
継続期間: 2022 12月 122022 12月 14

出版物シリーズ

名前Proceedings - 21st IEEE International Conference on Machine Learning and Applications, ICMLA 2022

Conference

Conference21st IEEE International Conference on Machine Learning and Applications, ICMLA 2022
国/地域Bahamas
CityNassau
Period22/12/1222/12/14

ASJC Scopus subject areas

  • コンピュータ ビジョンおよびパターン認識
  • コンピュータ サイエンスの応用
  • 人工知能
  • ハードウェアとアーキテクチャ

フィンガープリント

「Multi-view Contrastive Multiple Knowledge Graph Embedding for Knowledge Completion」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル