Multimodal Multiphoton Imaging of the Lipid Bilayer by Dye-Based Sum-Frequency Generation and Coherent Anti-Stokes Raman Scattering

Takaha Mizuguchi, Atsuya Momotake, Mafumi Hishida, Masato Yasui, Yasuhiko Yamamoto, Toshiharu Saiki, Mutsuo Nuriya

研究成果: Article査読

8 被引用数 (Scopus)

抄録

Coherent anti-Stokes Raman scattering (CARS) imaging is widely used for imaging molecular vibrations inside cells and tissues. Lipid bilayers are potential analytes for CARS imaging due to their abundant CH2 vibrational bonds. However, identifying the plasma membrane is challenging since it possesses a thin structure and is closely apposed to lipid structures inside the cells. Since the plasma membrane provides the most prominent asymmetric location within cells, orientation sensitive sum-frequency generation (SFG) imaging is a promising technique for selective visualization of the plasma membrane labeled by a nonfluorescent and SFG-specific dye, Ap3, when using a CARS microscope system. In this study, we closely compare the characteristics of lipid bilayer imaging by dye-based SFG and CARS using giant vesicles (GVs) and N27 rat dopaminergic neural cells. As a result, we show that CARS imaging can be exploited for the visualization of whole lipid structures inside GVs and cells but is insufficient for identification of the plasma membrane, which instead can be achieved using dye-based SFG imaging. In addition, we demonstrate that these unique properties can be combined and applied to the live-cell tracking of intracellular lipid structures such as lipid droplets beneath the plasma membrane. Thus, multimodal multiphoton imaging through a combination of dye-based SFG and CARS can serve as a powerful chemical imaging tool to investigate lipid bilayers in GVs and living cells.

本文言語English
ページ(範囲)5656-5660
ページ数5
ジャーナルAnalytical Chemistry
92
8
DOI
出版ステータスPublished - 2020 4月 21

ASJC Scopus subject areas

  • 分析化学

フィンガープリント

「Multimodal Multiphoton Imaging of the Lipid Bilayer by Dye-Based Sum-Frequency Generation and Coherent Anti-Stokes Raman Scattering」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル