TY - JOUR
T1 - Multiomics study of a heterotardigrade, Echinisicus testudo, suggests the possibility of convergent evolution of abundant heat-soluble proteins in Tardigrada
AU - Murai, Yumi
AU - Yagi-Utsumi, Maho
AU - Fujiwara, Masayuki
AU - Tanaka, Sae
AU - Tomita, Masaru
AU - Kato, Koichi
AU - Arakawa, Kazuharu
N1 - Funding Information:
The authors are grateful to Yuki Takai (IAB) and Naoko Ishii (IAB) for providing experimental support and to Konosuke M. Ii (IAB) for collecting E. testudo on proteome analysis. The authors also thank Yudai Sasaki (NCU) for his contribution during the early stage of this study, Dr. Tadashi Satoh (NCU), Kumiko Hattori (NCU) and Dr. Ean Wai Goh (ExCELLS) for spectroscopic measurements.
Funding Information:
This research was supported by Grants-in-Aid for Scientific Research KAKENHI of the Japan Society for the Promotion of Science (No. 17H03620 and 21H05279), the Nanotechnology Platform Program (Molecule and Material Synthesis, JPMX09S19MS0051) of MEXT, Japan, the Joint Research of the Exploratory Research Center on Life and Living Systems (ExCELLS program No.18–207, 19–208, 19–501), Instrument Center of Institute for Molceular Science, and research funds from the Yamagata prefectural government and Tsuruoka city. The funding bodies played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Background: Many limno-terrestrial tardigrades can enter an ametabolic state, known as anhydrobiosis, upon desiccation, in which the animals can withstand extreme environments. Through genomics studies, molecular components of anhydrobiosis are beginning to be elucidated, such as the expansion of oxidative stress response genes, loss of stress signaling pathways, and gain of tardigrade-specific heat-soluble protein families designated CAHS and SAHS. However, to date, studies have predominantly investigated the class Eutardigrada, and molecular mechanisms in the remaining class, Heterotardigrada, still remains elusive. To address this gap in the research, we report a multiomics study of the heterotardigrade Echiniscus testudo, one of the most desiccation-tolerant species which is not yet culturable in laboratory conditions. Results: In order to elucidate the molecular basis of anhydrobiosis in E. testudo, we employed a multi-omics strategy encompassing genome sequencing, differential transcriptomics, and proteomics. Using ultra-low input library sequencing protocol from a single specimen, we sequenced and assembled the 153.7 Mbp genome annotated using RNA-Seq data. None of the previously identified tardigrade-specific abundant heat-soluble genes was conserved, while the loss and expansion of existing pathways were partly shared. Furthermore, we identified two families novel abundant heat-soluble proteins, which we named E. testudo Abundant Heat Soluble (EtAHS), that are predicted to contain large stretches of disordered regions. Likewise the AHS families in eutardigrada, EtAHS shows structural changes from random coil to alphahelix as the water content was decreased in vitro. These characteristics of EtAHS proteins are analogous to those of CAHS in eutardigrades, while there is no conservation at the sequence level. Conclusions: Our results suggest that Heterotardigrada have partly shared but distinct anhydrobiosis machinery compared with Eutardigrada, possibly due to convergent evolution within Tardigrada. (276/350).
AB - Background: Many limno-terrestrial tardigrades can enter an ametabolic state, known as anhydrobiosis, upon desiccation, in which the animals can withstand extreme environments. Through genomics studies, molecular components of anhydrobiosis are beginning to be elucidated, such as the expansion of oxidative stress response genes, loss of stress signaling pathways, and gain of tardigrade-specific heat-soluble protein families designated CAHS and SAHS. However, to date, studies have predominantly investigated the class Eutardigrada, and molecular mechanisms in the remaining class, Heterotardigrada, still remains elusive. To address this gap in the research, we report a multiomics study of the heterotardigrade Echiniscus testudo, one of the most desiccation-tolerant species which is not yet culturable in laboratory conditions. Results: In order to elucidate the molecular basis of anhydrobiosis in E. testudo, we employed a multi-omics strategy encompassing genome sequencing, differential transcriptomics, and proteomics. Using ultra-low input library sequencing protocol from a single specimen, we sequenced and assembled the 153.7 Mbp genome annotated using RNA-Seq data. None of the previously identified tardigrade-specific abundant heat-soluble genes was conserved, while the loss and expansion of existing pathways were partly shared. Furthermore, we identified two families novel abundant heat-soluble proteins, which we named E. testudo Abundant Heat Soluble (EtAHS), that are predicted to contain large stretches of disordered regions. Likewise the AHS families in eutardigrada, EtAHS shows structural changes from random coil to alphahelix as the water content was decreased in vitro. These characteristics of EtAHS proteins are analogous to those of CAHS in eutardigrades, while there is no conservation at the sequence level. Conclusions: Our results suggest that Heterotardigrada have partly shared but distinct anhydrobiosis machinery compared with Eutardigrada, possibly due to convergent evolution within Tardigrada. (276/350).
KW - Anhydrobiosis
KW - Echiniscus testudo
KW - Heat-soluble protein
KW - Heterotardigrada
KW - Multiomics
UR - http://www.scopus.com/inward/record.url?scp=85119009307&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85119009307&partnerID=8YFLogxK
U2 - 10.1186/s12864-021-08131-x
DO - 10.1186/s12864-021-08131-x
M3 - Article
C2 - 34763673
AN - SCOPUS:85119009307
SN - 1471-2164
VL - 22
JO - BMC Genomics
JF - BMC Genomics
IS - 1
M1 - 813
ER -