Noncontact heartbeat detection by Viterbi algorithm with fusion of beat-beat interval and deep learning-driven branch metrics

Kohei Yamamoto, Tomoaki Ohtsuki

研究成果: Conference article査読

4 被引用数 (Scopus)

抄録

Heartbeat is one of essential vital signs to assess our health condition. Noncontact heartbeat detection is thus receiving a lot of attention in recent years, which motivates many researchers to investigate heartbeat detection via a Doppler radar. In this paper, to detect heartbeat with a high accuracy, we propose a Doppler radar-based heartbeat detection method by the Viterbi algorithm with a fusion of Beat-Beat Interval (BBI) and deep learning-driven Branch Metrics (BM). The Viterbi algorithm is a technique to estimate a sequence with maximum likelihood by using a pre-defined metric, namely, a BM. In the proposed method, we combine two BMs defined based on (i) a difference between two adjacent BBIs and (ii) an output probability of a deep learning model that judges whether a peak is caused by heartbeat or not. We apply the VIterbi algorithm with the fusion of the two BMs to the signal obtained by some signal processing. We experimentally confirmed that our method performed heartbeat detection with small Root Mean Squared Error (RMSE) between the estimated and actual BBIs.

本文言語English
ページ(範囲)8308-8312
ページ数5
ジャーナルICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2021-June
DOI
出版ステータスPublished - 2021
イベント2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021 - Virtual, Toronto, Canada
継続期間: 2021 6月 62021 6月 11

ASJC Scopus subject areas

  • ソフトウェア
  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「Noncontact heartbeat detection by Viterbi algorithm with fusion of beat-beat interval and deep learning-driven branch metrics」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル