Nonlinear adaptive filtering techniques with multiple kernels

研究成果: Conference article査読

11 被引用数 (Scopus)


In this paper, we propose a novel approach using multiple kernels to nonlinear adaptive filtering problems. We present two types of multi-kernel adaptive filtering algorithms, both of which are based on the kernel normalized least mean square (KNLMS) algorithm (Richard et al., 2009). One is a simple generalization of KNLMS, adopting the coherence criterion for dictionary selection. The other is derived by applying the adaptive proximal forward-backward splitting method to a certain squared distance function penalized by a weighted block ℓ 1 norm. The latter algorithm operates the weighted block soft-thresholding which encourages the sparsity of dictionary at the block level. Numerical examples demonstrate the efficacy of the proposed approach.

ジャーナルEuropean Signal Processing Conference
出版ステータスPublished - 2011 12月 1
イベント19th European Signal Processing Conference, EUSIPCO 2011 - Barcelona, Spain
継続期間: 2011 8月 292011 9月 2

ASJC Scopus subject areas

  • 信号処理
  • 電子工学および電気工学


「Nonlinear adaptive filtering techniques with multiple kernels」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。