@article{b86de99b6ae24c2fb206353cbd18e29f,
title = "Numerical analysis on behavior of dilute water droplets in detonation",
abstract = "Two-dimensional numerical simulations are conducted based on the Eulerian-Lagrangian method to model a gaseous detonation laden with monodispersed water droplets. The premixed mixture is a slightly diluted stoichiometric hydrogen oxygen mixture at low pressure. The outcome of the interactions of the droplet breakup with the cellular instabilities and the non-uniform flow behind the leading front is analyzed. The simulation results are also analyzed using instantaneous flow fields and Favre average profiles for water droplets. Breakup occurs mainly near the detonation front. The mean final diameter of the water droplets at the end of the breakup process is the same regardless of the initial strength of the leading shock or whether it is lower or greater than the Chapman-Jouguet value. The polydispersity comes from local phenomena behind the leading shock, such as forward jets coming from triple point collisions, transverse waves and a combination of both. The total breakup time is longer than that estimated from post-shock conditions and the present finding is in line with the previous experimental results on spray detonation.",
keywords = "Breakup, Gaseous detonation, Polydispersity, Water spray",
author = "Hiroaki Watanabe and Akiko Matsuo and Ashwin Chinnayya and Ken Matsuoka and Akira Kawasaki and Jiro Kasahara",
note = "Funding Information: This research is subsided by JSPS KAKENHI Grant Number JP19J12758 . This work is partially supported by “Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures” in Japan (Project ID: jh180030 and jh190036). Some of the results were obtained using supercomputing resources at Cyberscience Center, Tohoku University. An academic visit of Ashwin Chinnayya to Keio University as Guest Professor (Global) was made possible through a funding for top Global University Project in the Keio University. This work was supported by the CPER FEDER project of R{\'e}gion Nouvelle Aquitaine. Funding Information: This research is subsided by JSPS KAKENHI Grant Number JP19J12758. This work is partially supported by ?Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures? in Japan (Project ID: jh180030 and jh190036). Some of the results were obtained using supercomputing resources at Cyberscience Center, Tohoku University. An academic visit of Ashwin Chinnayya to Keio University as Guest Professor (Global) was made possible through a funding for top Global University Project in the Keio University. This work was supported by the CPER FEDER project of R?gion Nouvelle Aquitaine. Publisher Copyright: {\textcopyright} 2020 The Combustion Institute.; 38th International Symposium on Combustion, 2021 ; Conference date: 24-01-2021 Through 29-01-2021",
year = "2021",
doi = "10.1016/j.proci.2020.07.141",
language = "English",
volume = "38",
pages = "3709--3716",
journal = "Proceedings of the Combustion Institute",
issn = "1540-7489",
publisher = "Elsevier Limited",
number = "3",
}