On Data Augmentation for Models Involving Reciprocal Gamma Functions

Yasuyuki Hamura, Kaoru Irie, Shonosuke Sugasawa

研究成果: Article査読

抄録

In this article, we introduce a new and efficient data augmentation approach to the posterior inference of the models with shape parameters when the reciprocal gamma function appears in full conditional densities. Our approach is to approximate full conditional densities of shape parameters by using Gauss’s multiplication formula and Stirling’s formula for the gamma function, where the approximation error can be made arbitrarily small. We use the techniques to construct efficient Gibbs and Metropolis–Hastings algorithms for a variety of models that involve the gamma distribution, Student’s t-distribution, the Dirichlet distribution, the negative binomial distribution, and the Wishart distribution. The proposed sampling method is numerically demonstrated through simulation studies. Supplementary materials for this article are available online.

本文言語English
ページ(範囲)908-916
ページ数9
ジャーナルJournal of Computational and Graphical Statistics
32
3
DOI
出版ステータスPublished - 2023
外部発表はい

ASJC Scopus subject areas

  • 離散数学と組合せ数学
  • 統計学および確率
  • 統計学、確率および不確実性

フィンガープリント

「On Data Augmentation for Models Involving Reciprocal Gamma Functions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル