On linearization of nonparametric deconvolution estimators for repeated measurements model

Daisuke Kurisu, Taisuke Otsu

研究成果: Article査読

抄録

By utilizing intermediate Gaussian approximations, this paper establishes asymptotic linear representations of nonparametric deconvolution estimators for the classical measurement error model with repeated measurements. Our result is applied to derive confidence bands for the density and distribution functions of the error-free variable of interest and to establish faster convergence rates of the estimators than the ones obtained in the existing literature. Due to slower decay rates of the linearization errors, however, our bootstrap counterparts for confidence bands need to be constructed by subsamples.

本文言語English
論文番号104921
ジャーナルJournal of Multivariate Analysis
189
DOI
出版ステータスPublished - 2022 5月
外部発表はい

ASJC Scopus subject areas

  • 統計学および確率
  • 数値解析
  • 統計学、確率および不確実性

フィンガープリント

「On linearization of nonparametric deconvolution estimators for repeated measurements model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル