On some two phase problem for compressible and compressible viscous fluid flow separated by sharp interface

Takayuki Kubo, Yoshihiro Shibata, Kohei Soga

研究成果: Article査読

3 被引用数 (Scopus)

抄録

In this paper, we prove a local in time unique existence theorem for some two phase problem of compressible and compressible barotropic viscous fluid flow without surface tension in the Lp in time and the Lq in space framework with 2 < p < 1 and N < q < ∞ under the assumption that the initial domain is a uniform Wq2-1/q domain in ℝN(N ≥ 2). After transforming a unknown time dependent domain to the initial domain by the Lagrangian transformation, we solve the problem by the contraction mapping principle with the maximal Lp-Lq regularity of the generalized Stokes operator for the compressible viscous fluid flow with free boundary condition. The key step of our method is to prove the existence of R-bounded solution operator to resolvent problem corresponding to linearized problem. The R-boundedness combined with Weis's operator valued Fourier multiplier theorem implies the generation of analytic semigroup and the maximal Lp-Lq regularity theorem.

本文言語English
ページ(範囲)3741-3774
ページ数34
ジャーナルDiscrete and Continuous Dynamical Systems- Series A
36
7
DOI
出版ステータスPublished - 2016 7月

ASJC Scopus subject areas

  • 分析
  • 離散数学と組合せ数学
  • 応用数学

フィンガープリント

「On some two phase problem for compressible and compressible viscous fluid flow separated by sharp interface」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル