Online learning in L2 space with multiple Gaussian kernels

Motoya Ohnishi, Masahiro Yukawa

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

We present a novel online learning paradigm for nonlinear function estimation based on iterative orthogonal projections in an L2 space reflecting the stochastic property of input signals. An online algorithm is built upon the fact that any finite dimensional subspace has a reproducing kernel, which is given in terms of the Gram matrix of its basis. The basis used in the present study involves multiple Gaussian kernels. The sequence generated by the algorithm is expected to approach towards the best approximation, in the L2-norm sense, of the nonlinear function to be estimated. This is in sharp contrast to the conventional kernel adaptive filtering paradigm because the best approximation in the reproducing kernel Hilbert space generally differs from the minimum mean squared error estimator over the subspace (Yukawa and Müller 2016). Numerical examples show the efficacy of the proposed approach.

本文言語English
ホスト出版物のタイトル25th European Signal Processing Conference, EUSIPCO 2017
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1594-1598
ページ数5
ISBN(電子版)9780992862671
DOI
出版ステータスPublished - 2017 10月 23
イベント25th European Signal Processing Conference, EUSIPCO 2017 - Kos, Greece
継続期間: 2017 8月 282017 9月 2

出版物シリーズ

名前25th European Signal Processing Conference, EUSIPCO 2017
2017-January

Other

Other25th European Signal Processing Conference, EUSIPCO 2017
国/地域Greece
CityKos
Period17/8/2817/9/2

ASJC Scopus subject areas

  • 信号処理

フィンガープリント

「Online learning in L2 space with multiple Gaussian kernels」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル