Online model selection and learning by multikernel adaptive filtering

Masahiro Yukawa, Ryu Ichiro Ishii

研究成果: Conference contribution

11 被引用数 (Scopus)

抄録

We propose an efficient multikernel adaptive filtering algorithm with double regularizers, providing a novel pathway towards online model selection and learning. The task is the challenging nonlinear adaptive filtering under no knowledge about a suitable kernel. Under this limited-knowledge assumption on an underlying model of a system of interest, many possible kernels are employed and one of the regularizers, a block ℓ1 norm for kernel groups, contributes to selecting a proper model (relevant kernels) in online and adaptive fashion, preventing a nonlinear filter from overfitting to noisy data. The other regularizer is the block ℓ1 norm for data groups, contributing to updating the dictionary adaptively. As the resulting cost function contains two nonsmooth (but proximable) terms, we approximate the latter regularizer by its Moreau envelope and apply the adaptive proximal forwardbackward splitting method to the approximated cost function. Numerical examples show the efficacy of the proposed algorithm.

本文言語English
ホスト出版物のタイトル2013 Proceedings of the 21st European Signal Processing Conference, EUSIPCO 2013
出版社European Signal Processing Conference, EUSIPCO
ISBN(印刷版)9780992862602
出版ステータスPublished - 2013
イベント2013 21st European Signal Processing Conference, EUSIPCO 2013 - Marrakech, Morocco
継続期間: 2013 9月 92013 9月 13

出版物シリーズ

名前European Signal Processing Conference
ISSN(印刷版)2219-5491

Other

Other2013 21st European Signal Processing Conference, EUSIPCO 2013
国/地域Morocco
CityMarrakech
Period13/9/913/9/13

ASJC Scopus subject areas

  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「Online model selection and learning by multikernel adaptive filtering」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル