Optimum design of plastic structures under displacement constraints

I. Kaneko, G. Maier

研究成果: Article査読

55 被引用数 (Scopus)

抄録

This paper deals with the optimum design under given loads, of discrete (truss-like) linearly hardening or non-hardening plastic structures, subject to limitations on displacements and deformations and to linear technological constraints. Basic assumptions are: (i) the "cost" function is linear in the design variables; (ii) no local unstressing occurs under the given proportional loading, so that holonomic plastic laws can be adopted. Both elastic-plastic and rigid-hardening models are considered. A typical mathematical feature of the optimization problem is a (nonlinear, nonconvex) complementarity constraint. For situations where the local resistances, assumed to be design variables, do not affect the local stiffness, a branch-and-bound method is proposed and an alternative quadratic programming approach is envisaged. For situations where local strength and stiffness are coupled, a method is developed consisting basically of iterative applications of the procedure devised for uncoupled cases. The computational efficiency of the solution methods proposed is examined by means of numerical tests.

本文言語English
ページ(範囲)369-391
ページ数23
ジャーナルComputer Methods in Applied Mechanics and Engineering
27
3
DOI
出版ステータスPublished - 1981 7月

ASJC Scopus subject areas

  • 計算力学
  • 材料力学
  • 機械工学
  • 物理学および天文学(全般)
  • コンピュータ サイエンスの応用

フィンガープリント

「Optimum design of plastic structures under displacement constraints」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル