Overexpression of poly(ADP-ribose) polymerase disrupts organization of cytoskeletal F-actin and tissue polarity in Drosophila

Masahiro Uchida, Shuji Hanai, Naoya Uematsu, Kazunobu Sawamoto, Hideyuki Okano, Masanao Miwa, Kazuhiko Uchida

研究成果: Article査読

15 被引用数 (Scopus)

抄録

Poly(ADP-ribose) polymerase (PARP) may play important roles in nuclear events such as cell cycle, cell proliferation, and maintenance of chromosomal stability. However, the exact biological role played by PARP or how PARP is involved in these cellular functions is still unclear. To elucidate the biological functions of PARP in vivo, we have constructed transgenic flies that overexpress Drosophila PARP in the developing eye primordia. These flies showed mild roughening of the normally smooth ommatidial lattice and tissue polarity disruption caused by improper rotation and chirality of the ommatidia. To clarify how this phenotypical change was induced, here we analyzed transgenic flies overexpressing PARP in the developing eye, embryo, and adult in detail. PARP mRNA level and the phenotype were enhanced in flies carrying more copies of the transgene. Developing eyes from third instar larvae were analyzed by using the neural cell marker to examine the involvement of PARP in cell fate. Morphological disorder of non-neuronal accessory cells was observed in PARP transgenic flies. Interestingly, overexpression of PARP did not interfere with the cell cycle or apoptosis, but it did disrupt the organization of cytoskeletal F-actin, resulting in aberrant cell and tissue morphology. Furthermore, heat-induced PARP expression disrupted organization of cytoskeletal F-actin in embryos and tissue polarity in adult flies. Because these phenotypes closely resembled mutants or transgenic flies of the tissue polarity genes, genetic interaction of PARP with known tissue polarity genes was examined. Transgenic flies expressing either PARP or RhoA GTPase in the eye were crossed, and co-expression of PARP suppressed the effect of RhoA GTPase. Our results indicate that PARP may play a role in cytoskeletal or cytoplasmic events in developmental processes of Drosophila.

本文言語English
ページ(範囲)6696-6702
ページ数7
ジャーナルJournal of Biological Chemistry
277
8
DOI
出版ステータスPublished - 2002 2月 22
外部発表はい

ASJC Scopus subject areas

  • 生化学
  • 分子生物学
  • 細胞生物学

フィンガープリント

「Overexpression of poly(ADP-ribose) polymerase disrupts organization of cytoskeletal F-actin and tissue polarity in Drosophila」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル