抄録
We report on an investigation of the orthogonal coupling system of a NiO/CoPt bilayer on a Pt(111)/glass substrate, with CoPt showing strong perpendicular magnetic anisotropy. This system displays a favorable perpendicular exchange bias with an exchange bias field as high as-900 Oe, exceeding most of the results reported so far from various NiO/FM exchange coupling systems. In contrast to the general bottom-pinned stacking sequence, in this research we placed an antiferromagnetic layer on top of a ferromagnetic layer; an interesting new phenomenon was observed-the loop shift amplitude does not change with the thickness of the antiferromagnet, which is explained in detail by modeling and computing. We demonstrate a modified random field model by applying Malozemoff's assumption to a 'spin flop' coupling system, in which interface roughness plays a crucial role. A simulation on the basis of the random field model agrees well with the experimental observations.
本文言語 | English |
---|---|
論文番号 | 225002 |
ジャーナル | Journal of Physics D: Applied Physics |
巻 | 53 |
号 | 22 |
DOI | |
出版ステータス | Published - 2020 5月 27 |
ASJC Scopus subject areas
- 電子材料、光学材料、および磁性材料
- 凝縮系物理学
- 音響学および超音波学
- 表面、皮膜および薄膜