TY - CHAP
T1 - Physiological functions of D-serine mediated through δ2 glutamate receptors in the cerebellum
AU - Kakegawa, Wataru
AU - Yuzaki, Michisuke
PY - 2016/1/1
Y1 - 2016/1/1
N2 - D-Serine (D-Ser), a major gliotransmitter, acts as an endogenous co-agonist for the N-methyl-D-aspartate-type ionotropic glutamate receptor (NMDA receptor) which regulates synaptic plasticity underlying certain types of learning and memory in the central nervous system. While D-Ser is abundant in the forebrain throughout life, it exists only transiently in the immature cerebellum because D-amino acid oxidase (DAAO), a D-Ser-degrading enzyme, begins to be highly expressed in the mature cerebellum. However, it remains unclear why and how D-Ser impacts physiological functions in the developing cerebellum. Recently, D-Ser has been reported to bind to δ2-type ionotropic glutamate receptors (δ2 receptors), which are exclusively expressed on the excitatory synapses between cerebellar granule cell axons (parallel fibers) and Purkinje cells, and control the induction of long-term depression (LTD), a form of synaptic plasticity underlying cerebellar motor learning. In the developing cerebellum, we found that D-Ser, released from Bergmann glia in response to neuronal activity, binds to δ2 receptors, thereby conveying a critical signal for LTD and motor learning. Interestingly, while D-Ser activates NMDA receptor-coupled channels, it evoked non-channel functions of δ2 receptors. In addition to δ2 receptors, their homolog δ1 receptors are widely expressed in various brain regions throughout life and also bind to D-Ser; therefore, D-Ser-δ receptor interactions may be a general signaling mechanism by which glia communicate with neurons, an important facet of the tripartite synapse.
AB - D-Serine (D-Ser), a major gliotransmitter, acts as an endogenous co-agonist for the N-methyl-D-aspartate-type ionotropic glutamate receptor (NMDA receptor) which regulates synaptic plasticity underlying certain types of learning and memory in the central nervous system. While D-Ser is abundant in the forebrain throughout life, it exists only transiently in the immature cerebellum because D-amino acid oxidase (DAAO), a D-Ser-degrading enzyme, begins to be highly expressed in the mature cerebellum. However, it remains unclear why and how D-Ser impacts physiological functions in the developing cerebellum. Recently, D-Ser has been reported to bind to δ2-type ionotropic glutamate receptors (δ2 receptors), which are exclusively expressed on the excitatory synapses between cerebellar granule cell axons (parallel fibers) and Purkinje cells, and control the induction of long-term depression (LTD), a form of synaptic plasticity underlying cerebellar motor learning. In the developing cerebellum, we found that D-Ser, released from Bergmann glia in response to neuronal activity, binds to δ2 receptors, thereby conveying a critical signal for LTD and motor learning. Interestingly, while D-Ser activates NMDA receptor-coupled channels, it evoked non-channel functions of δ2 receptors. In addition to δ2 receptors, their homolog δ1 receptors are widely expressed in various brain regions throughout life and also bind to D-Ser; therefore, D-Ser-δ receptor interactions may be a general signaling mechanism by which glia communicate with neurons, an important facet of the tripartite synapse.
KW - Cerebellum
KW - D-serine
KW - Ionotropic glutamate receptor
KW - Learning and memory
KW - Long-term depression (LTD)
KW - Synapse
UR - http://www.scopus.com/inward/record.url?scp=85017046036&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85017046036&partnerID=8YFLogxK
U2 - 10.1007/978-4-431-56077-7_5
DO - 10.1007/978-4-431-56077-7_5
M3 - Chapter
AN - SCOPUS:85017046036
SN - 9784431560753
SP - 65
EP - 80
BT - D-Amino Acids: Physiology, Metabolism, and Application
PB - Springer Japan
ER -