Podocyte Ercc1 is indispensable for glomerular integrity

Eriko Yoshida Hama, Ran Nakamichi, Akihito Hishikawa, Miho Kihara, Takaya Abe, Norifumi Yoshimoto, Erina Sugita Nishimura, Hiroshi Itoh, Kaori Hayashi

研究成果: Article査読

1 被引用数 (Scopus)

抄録

As life expectancy continues to increase, age-related kidney diseases are becoming more prevalent. Chronic kidney disease (CKD) is not only a consequence of aging but also a potential accelerator of aging process. Here we report the pivotal role of podocyte ERCC1, a DNA repair factor, in maintaining glomerular integrity and a potential effect on multiple organs. Podocyte-specific ERCC1-knockout mice developed severe proteinuria, glomerulosclerosis, and renal failure, accompanied by a significant increase in glomerular DNA single-strand breaks (SSBs) and double-strand breaks (DSBs). ERCC1 gene transfer experiment in the knockout mice attenuated proteinuria and glomerulosclerosis with reduced DNA damage. Notably, CD44+CD8+ memory T cells, indicative of T-cell senescence, were already elevated in the peripheral blood of knockout mice at 10 weeks old. Additionally, levels of senescence-associated secretory phenotype (SASP) factors were significantly increased in both the circulation and multiple organs of the knockout mice. In older mice and human patients, we observed an accumulation of DSBs and an even greater buildup of SSBs in glomeruli, despite no significant reduction in ERCC1 expression with age in mice. Collectively, our findings highlight the crucial role of ERCC1 in repairing podocyte DNA damage, with potential implications for inflammation in various organs.

本文言語English
論文番号149713
ジャーナルBiochemical and Biophysical Research Communications
704
DOI
出版ステータスPublished - 2024 4月 16

ASJC Scopus subject areas

  • 生物理学
  • 生化学
  • 分子生物学
  • 細胞生物学

フィンガープリント

「Podocyte Ercc1 is indispensable for glomerular integrity」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル