TY - JOUR
T1 - Poincaré-Cartan class and deformation quantization of Kähler manifolds
AU - Omori, Hideki
AU - Maeda, Yoshiaki
AU - Miyazaki, Naoya
AU - Yoshioka, Akira
PY - 1998/1/1
Y1 - 1998/1/1
N2 - We introduce a complete invariant for Weyl manifolds, called a Poincaré-Cartan class. Applying the constructions of the Weyl manifold to complex manifolds via the Poincaré-Cartan class, we propose the notion of a noncommutative Kähler manifold. For a given Kähler manifold, the necessary and sufficient condition for a Weyl manifold to be a noncommutative Kähler manifold is given. In particular, there exists a noncommutative Kähler manifold for any Kähler manifold. We also construct the noncommutative version of the S1-principal bundle over a quantizable Weyl manifold.
AB - We introduce a complete invariant for Weyl manifolds, called a Poincaré-Cartan class. Applying the constructions of the Weyl manifold to complex manifolds via the Poincaré-Cartan class, we propose the notion of a noncommutative Kähler manifold. For a given Kähler manifold, the necessary and sufficient condition for a Weyl manifold to be a noncommutative Kähler manifold is given. In particular, there exists a noncommutative Kähler manifold for any Kähler manifold. We also construct the noncommutative version of the S1-principal bundle over a quantizable Weyl manifold.
UR - http://www.scopus.com/inward/record.url?scp=0032474122&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032474122&partnerID=8YFLogxK
U2 - 10.1007/s002200050356
DO - 10.1007/s002200050356
M3 - Article
AN - SCOPUS:0032474122
SN - 0010-3616
VL - 194
SP - 207
EP - 230
JO - Communications in Mathematical Physics
JF - Communications in Mathematical Physics
IS - 1
ER -