Poles and α-points of meromorphic solutions of the first Painlevé hierarchy

Shun Shimomura

研究成果: Article査読

11 被引用数 (Scopus)

抄録

The first Painlevé hierarchy, which is a sequence of higher order analogues of the first Painlevé equation, follows from the singular manifold equations for the mKdV hierarchy. For meromorphic solutions of the first Painlevé hierarchy, we give a lower estimate for the number of poles; which is regarded as an extension of one corresponding to the first Painlevé equation, and which indicates a conjecture on the growth order. From our main result, two corollaries follow: one is the transcendency of meromorphic solutions, and the other is a lower estimate for the frequency of α-points. An essential part of our proof is estimation of certain sums concerning the poles of each meromorphic solution.

本文言語English
ページ(範囲)471-485
ページ数15
ジャーナルPublications of the Research Institute for Mathematical Sciences
40
2
DOI
出版ステータスPublished - 2004 7月

ASJC Scopus subject areas

  • 数学一般

フィンガープリント

「Poles and α-points of meromorphic solutions of the first Painlevé hierarchy」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル