Predicting COVID-19 Severe Patients and Evaluation Method of 3 Stages Severe Level by Machine Learning

Jiahao Qu, Brian Sumali, Yasue Mitsukura

研究成果: Conference contribution

抄録

Since the outbreak COVID-19 in Wuhan, China in December 2019, a large number of patients have been seen worldwide, and the number of infections continues to show an increasing trend. The vast majority of COVID-19 patients will have fever, headache, and mild respiratory symptoms, but a small number of severely ill patients will experience respiratory distress and related complications, which seriously endanger their lives. The large number of patients also puts the healthcare system to the test. To maximize the protection of patients' lives and the effective use of medical resources, this study collected blood data from 313 patients by machine learning, used 7 blood test items as the feature quantity, established an effective linear SVM prediction model for severe/non-severe disease (recall: 93.55%, specificity: 93.22%), and for 3 stages evaluation of the degree of severe level in severe patients was developed for patients with critical illness. The abnormal increase in Ferritin values was also found to be closely related to the development of severity.

本文言語English
ホスト出版物のタイトル2021 IEEE 4th International Conference on Electronics and Communication Engineering, ICECE 2021
出版社Institute of Electrical and Electronics Engineers Inc.
ページ277-281
ページ数5
ISBN(電子版)9781728194226
DOI
出版ステータスPublished - 2021
イベント4th IEEE International Conference on Electronics and Communication Engineering, ICECE 2021 - Virtual, Xi'an, China
継続期間: 2021 12月 172021 12月 19

出版物シリーズ

名前2021 IEEE 4th International Conference on Electronics and Communication Engineering, ICECE 2021

Conference

Conference4th IEEE International Conference on Electronics and Communication Engineering, ICECE 2021
国/地域China
CityVirtual, Xi'an
Period21/12/1721/12/19

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • コンピュータ サイエンスの応用
  • コンピュータ ビジョンおよびパターン認識
  • ハードウェアとアーキテクチャ
  • 情報システムおよび情報管理
  • 電子工学および電気工学
  • 安全性、リスク、信頼性、品質管理

フィンガープリント

「Predicting COVID-19 Severe Patients and Evaluation Method of 3 Stages Severe Level by Machine Learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル