TY - JOUR
T1 - Progesterone inhibits glucose uptake by affecting diverse steps of insulin signaling in 3T3-L1 adipocytes
AU - Wada, Tsutomu
AU - Hori, Satoko
AU - Sugiyama, Maine
AU - Fujisawa, Eriko
AU - Nakano, Tetsuro
AU - Tsuneki, Hiroshi
AU - Nagira, Kiyofumi
AU - Saito, Shigeru
AU - Sasaoka, Toshiyasu
PY - 2010/4
Y1 - 2010/4
N2 - Maternal insulin resistance is essential for efficient provision of glucose to the fetus. Although elevation of placental hormones is known to relate to the development of insulin resistance, the precise underlying mechanism of maternal insulin resistance is unknown. Therefore, we examined the molecular mechanisms of progesterone causing insulin resistance in 3T3-L1 adipocytes. Progesterone at 10-4 M, but not 10-5 M, reduced the amount of IRS-1. As a result, insulin-induced phosphorylation of IRS-1, the association of IRS-1 with p85α, and subsequent phosphorylation of Akt1 and -2 was decreased moderately by 10-4 M progesterone. Subsequently, insulin-induced translocation of GLUT4 to the plasma membrane evaluated by immunostaining on the plasma membrane sheet by confocal laser microscope was also decreased by 10-4 M progesterone. In contrast, 2-[ 3H]deoxyglucose (2DG) uptake was markedly inhibited by both 10 -5 and 10-4 M progesterone in a dose-dependent manner. Surprisingly, 2DG uptake elicited by adenovirus-mediated expression of constitutive-active mutant of PI 3-kinase (myr-p110) and Akt (myr-Akt) was suppressed by progesterone. Interestingly, insulin-induced tyrosine phosphorylation of Cbl and activation of TC10 were inhibited by progesterone at 10-5 M. These results indicate that progesterone is implicated in insulin resistance during pregnancy by inhibiting the PI 3-kinase pathway at the step of 1) IRS-1 expression and 2) distal to Akt and 3) by suppressing the PI 3-kinase-independent pathway of TC10 activation by affecting Cbl phosphorylation.
AB - Maternal insulin resistance is essential for efficient provision of glucose to the fetus. Although elevation of placental hormones is known to relate to the development of insulin resistance, the precise underlying mechanism of maternal insulin resistance is unknown. Therefore, we examined the molecular mechanisms of progesterone causing insulin resistance in 3T3-L1 adipocytes. Progesterone at 10-4 M, but not 10-5 M, reduced the amount of IRS-1. As a result, insulin-induced phosphorylation of IRS-1, the association of IRS-1 with p85α, and subsequent phosphorylation of Akt1 and -2 was decreased moderately by 10-4 M progesterone. Subsequently, insulin-induced translocation of GLUT4 to the plasma membrane evaluated by immunostaining on the plasma membrane sheet by confocal laser microscope was also decreased by 10-4 M progesterone. In contrast, 2-[ 3H]deoxyglucose (2DG) uptake was markedly inhibited by both 10 -5 and 10-4 M progesterone in a dose-dependent manner. Surprisingly, 2DG uptake elicited by adenovirus-mediated expression of constitutive-active mutant of PI 3-kinase (myr-p110) and Akt (myr-Akt) was suppressed by progesterone. Interestingly, insulin-induced tyrosine phosphorylation of Cbl and activation of TC10 were inhibited by progesterone at 10-5 M. These results indicate that progesterone is implicated in insulin resistance during pregnancy by inhibiting the PI 3-kinase pathway at the step of 1) IRS-1 expression and 2) distal to Akt and 3) by suppressing the PI 3-kinase-independent pathway of TC10 activation by affecting Cbl phosphorylation.
KW - Gestational diabetes
KW - Insulin resistance
KW - TC10
UR - http://www.scopus.com/inward/record.url?scp=77949822063&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77949822063&partnerID=8YFLogxK
U2 - 10.1152/ajpendo.00649.2009
DO - 10.1152/ajpendo.00649.2009
M3 - Article
C2 - 20071559
AN - SCOPUS:77949822063
SN - 0193-1849
VL - 298
SP - E881-E888
JO - American Journal of Physiology - Endocrinology and Metabolism
JF - American Journal of Physiology - Endocrinology and Metabolism
IS - 4
ER -