抄録
Silicon photonics is a powerful platform for implementing large-scale photonic integrated circuits (PICs) because of its compatibility with mature complementary-metal-oxide-semiconductor (CMOS) technology. Exploiting silicon-based PICs for quantum photonic information processing (or the so-called silicon quantum photonics) provides a promising pathway for large-scale quantum applications. For the development of scalable silicon quantum PICs, a major challenge is integrating on-silicon quantum light sources that deterministically emit single photons. In this regard, the use of epitaxial InAs/GaAs quantum dots (QDs) is a very promising approach because of their capability of deterministic single-photon emission with high purity and indistinguishability. However, the required hybrid integration is inherently difficult and often lacks the compatibility with CMOS processes. Here, we demonstrate a QD single-photon source integrated on a glass-clad silicon photonic waveguide processed by a CMOS foundry. Hybrid integration is performed using transfer printing, which enables us to integrate heterogeneous optical components in a simple pick-and-place manner and thus assemble them after the entire CMOS process is completed. We observe single-photon emission from the integrated QD and its efficient coupling into the silicon waveguide. Our transfer-printing-based approach is fully compatible with CMOS back-end processes and thus will open the possibility for realizing large-scale quantum PICs that leverage CMOS technology.
本文言語 | English |
---|---|
論文番号 | 036105 |
ジャーナル | APL Photonics |
巻 | 4 |
号 | 3 |
DOI | |
出版ステータス | Published - 2019 3月 1 |
外部発表 | はい |
ASJC Scopus subject areas
- 原子分子物理学および光学
- コンピュータ ネットワークおよび通信