TY - JOUR
T1 - Quantum mechanics in rotating-radio-frequency traps and Penning traps with a quadrupole rotating field
AU - Abe, K.
AU - Hasegawa, T.
PY - 2010/3/4
Y1 - 2010/3/4
N2 - Quantum-mechanical analysis of ion motion in a rotating-radio-frequency (rrf) trap or in a Penning trap with a quadrupole rotating field is carried out. Rrf traps were introduced by Hasegawa and Bollinger [Phys. Rev. A 72, 043404 (2005)]. The classical motion of a single ion in this trap is described by only trigonometric functions, whereas in the conventional linear radio-frequency (rf) traps it is by the Mathieu functions. Because of the simple classical motion in the rrf trap, it is expected that the quantum-mechanical analysis of the rrf traps is also simple compared to that of the linear rf traps. The analysis of Penning traps with a quadrupole rotating field is also possible in a way similar to the rrf traps. As a result, the Hamiltonian in these traps is the same as the two-dimensional harmonic oscillator, and energy levels and wave functions are derived as exact results. In these traps, it is found that one of the vibrational modes in the rotating frame can have negative energy levels, which means that the zero-quantum-number state ("ground" state) is the highest energy state.
AB - Quantum-mechanical analysis of ion motion in a rotating-radio-frequency (rrf) trap or in a Penning trap with a quadrupole rotating field is carried out. Rrf traps were introduced by Hasegawa and Bollinger [Phys. Rev. A 72, 043404 (2005)]. The classical motion of a single ion in this trap is described by only trigonometric functions, whereas in the conventional linear radio-frequency (rf) traps it is by the Mathieu functions. Because of the simple classical motion in the rrf trap, it is expected that the quantum-mechanical analysis of the rrf traps is also simple compared to that of the linear rf traps. The analysis of Penning traps with a quadrupole rotating field is also possible in a way similar to the rrf traps. As a result, the Hamiltonian in these traps is the same as the two-dimensional harmonic oscillator, and energy levels and wave functions are derived as exact results. In these traps, it is found that one of the vibrational modes in the rotating frame can have negative energy levels, which means that the zero-quantum-number state ("ground" state) is the highest energy state.
UR - http://www.scopus.com/inward/record.url?scp=77749295183&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77749295183&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.81.033402
DO - 10.1103/PhysRevA.81.033402
M3 - Article
AN - SCOPUS:77749295183
SN - 1050-2947
VL - 81
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
IS - 3
M1 - 033402
ER -