TY - JOUR
T1 - Quark-hadron continuity under rotation
T2 - Vortex continuity or boojum?
AU - Chatterjee, Chandrasekhar
AU - Nitta, Muneto
AU - Yasui, Shigehiro
N1 - Publisher Copyright:
© 2019 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP .
PY - 2019/2/1
Y1 - 2019/2/1
N2 - Quark-hadron continuity was proposed as a crossover between hadronic matter and quark matter without a phase transition, based on the matching of the symmetries and excitations in both phases. In the limit of a light strange-quark mass, it connects hyperon matter and the color-flavor-locked (CFL) phase exhibiting color superconductivity. Recently, it was proposed that this conjecture could be generalized in the presence of superfluid vortices penetrating both phases [arXiv:1803.05115], and it was suggested that one hadronic superfluid vortex in hyperon matter could be connected to one non-Abelian vortex (color magnetic flux tube) in the CFL phase. Here, we argue that their proposal is consistent only at large distances; instead, we show that three hadronic superfluid vortices must combine with three non-Abelian vortices with different colors with the total color magnetic fluxes canceled out, where the junction is called a colorful boojum. We rigorously prove this in both a macroscopic theory based on the Ginzburg-Landau description in which symmetry and excitations match (including vortex cores), and a microscopic theory in which the Aharonov-Bohm phases of quarks around vortices match.
AB - Quark-hadron continuity was proposed as a crossover between hadronic matter and quark matter without a phase transition, based on the matching of the symmetries and excitations in both phases. In the limit of a light strange-quark mass, it connects hyperon matter and the color-flavor-locked (CFL) phase exhibiting color superconductivity. Recently, it was proposed that this conjecture could be generalized in the presence of superfluid vortices penetrating both phases [arXiv:1803.05115], and it was suggested that one hadronic superfluid vortex in hyperon matter could be connected to one non-Abelian vortex (color magnetic flux tube) in the CFL phase. Here, we argue that their proposal is consistent only at large distances; instead, we show that three hadronic superfluid vortices must combine with three non-Abelian vortices with different colors with the total color magnetic fluxes canceled out, where the junction is called a colorful boojum. We rigorously prove this in both a macroscopic theory based on the Ginzburg-Landau description in which symmetry and excitations match (including vortex cores), and a microscopic theory in which the Aharonov-Bohm phases of quarks around vortices match.
UR - http://www.scopus.com/inward/record.url?scp=85062601977&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85062601977&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.99.034001
DO - 10.1103/PhysRevD.99.034001
M3 - Article
AN - SCOPUS:85062601977
SN - 2470-0010
VL - 99
JO - Physical Review D
JF - Physical Review D
IS - 3
M1 - 034001
ER -