Receptor-independent augmentation of adenovirus-mediated gene transfer with chitosan in vitro

Yosei Kawamata, Yuji Nagayama, Kazuhiko Nakao, Hiroyuki Mizuguchi, Takao Hayakawa, Toshinori Sato, Nobuko Ishii

研究成果: Article査読

37 被引用数 (Scopus)


Recombinant adenovirus is one of the most widely used viral vectors for gene delivery. This study was designed to evaluate the ability of chitosan, a cationic, linear polysaccharide composed of β(1,4) linked glucosamine partly containing N-acetyl-glucosamine, to enhance the in vitro infectivity of adenovirus to mammalian cells. Wild type and a fiber-mutant replication-defective recombinant adenoviruses expressing β-galactosidase were used. In the latter, an RGD peptide, the binding site for αvβ3 and αvβ5 integrin, was introduced in the fiber knob enabling adenovirus receptor-independent viral infection. Enhanced effect of chitosan on the infectivity of both adenoviruses was observed in Chinese hamster ovary cells that do not express the receptor for adenovirus with β-galactosidase activity assay and x-gal staining. These data indicate the receptor-independent mechanism(s) for this enhancement effect. In addition, we found that pH of the culture medium, and molecular mass and concentration of chitosan are also critical factors. Thus, the highest effect was obtained with 0.1-1μg/ml of chitosan with molecular mass of 19K and 40K in the culture medium of pH 6.4; on the other hand, the effect was negligible with the higher chitosan concentrations (10μg/ml or more), lower or higher molecular mass (11K and 110K) of chitosan, or at pH of 7.4. Studies using several cell lines with variable levels of adenoviral infectivity revealed that this enhanced effect is evident in the cells with poor infectivity to adenovirus. Since chitosan is biocompatible and inexpensive, these data indicate that chitosan may be a potential candidate for a non-viral vector to safely increase adenoviral infectivity to mammalian cells, particularly those with poor susceptibility to adenoviral infection.

出版ステータスPublished - 2002 12月 1

ASJC Scopus subject areas

  • バイオエンジニアリング
  • セラミックおよび複合材料
  • 生物理学
  • 生体材料
  • 材料力学


「Receptor-independent augmentation of adenovirus-mediated gene transfer with chitosan in vitro」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。