TY - JOUR
T1 - Regulation of reactive oxygen species in stem cells and cancer stem cells
AU - Kobayashi, Chiharu I.
AU - Suda, Toshio
PY - 2012/1
Y1 - 2012/1
N2 - Stem cells are defined by their ability to self-renew and their multi-potent differentiation capacity. As such, stem cells maintain tissue homeostasis throughout the life of a multicellular organism. Aerobic metabolism, while enabling efficient energy production, also generates reactive oxygen species (ROS), which damage cellular components. Until recently, the focus in stem cell biology has been on the adverse effects of ROS, particularly the damaging effects of ROS accumulation on tissue aging and the development of cancer, and various anti-oxidative and anti-stress mechanisms of stem cells have been characterized. However, it has become increasingly clear that, in some cases, redox status plays an important role in stem cell maintenance, i.e., regulation of the cell cycle. An active area of current research is redox regulation in various cancer stem cells, the malignant counterparts of normal stem cells that are viewed as good targets of cancer therapy. In contrast to cancer cells, in which ROS levels are increased, some cancer stem cells maintain low ROS levels, exhibiting redox patterns that are similar to the corresponding normal stem cell. To fully elucidate the mechanisms involved in stem cell maintenance and to effectively target cancer stem cells, it is essential to understand ROS regulatory mechanisms in these different cell types. Here, the mechanisms of redox regulation in normal stem cells, cancer cells, and cancer stem cells are reviewed.
AB - Stem cells are defined by their ability to self-renew and their multi-potent differentiation capacity. As such, stem cells maintain tissue homeostasis throughout the life of a multicellular organism. Aerobic metabolism, while enabling efficient energy production, also generates reactive oxygen species (ROS), which damage cellular components. Until recently, the focus in stem cell biology has been on the adverse effects of ROS, particularly the damaging effects of ROS accumulation on tissue aging and the development of cancer, and various anti-oxidative and anti-stress mechanisms of stem cells have been characterized. However, it has become increasingly clear that, in some cases, redox status plays an important role in stem cell maintenance, i.e., regulation of the cell cycle. An active area of current research is redox regulation in various cancer stem cells, the malignant counterparts of normal stem cells that are viewed as good targets of cancer therapy. In contrast to cancer cells, in which ROS levels are increased, some cancer stem cells maintain low ROS levels, exhibiting redox patterns that are similar to the corresponding normal stem cell. To fully elucidate the mechanisms involved in stem cell maintenance and to effectively target cancer stem cells, it is essential to understand ROS regulatory mechanisms in these different cell types. Here, the mechanisms of redox regulation in normal stem cells, cancer cells, and cancer stem cells are reviewed.
UR - http://www.scopus.com/inward/record.url?scp=82155171284&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=82155171284&partnerID=8YFLogxK
U2 - 10.1002/jcp.22764
DO - 10.1002/jcp.22764
M3 - Short survey
C2 - 21448925
AN - SCOPUS:82155171284
SN - 0021-9541
VL - 227
SP - 421
EP - 430
JO - Journal of Cellular Physiology
JF - Journal of Cellular Physiology
IS - 2
ER -