Remarks on semantic completeness for proof-terms with Laird's dual affine/intuitionistic λ-calculus

Mitsuhiro Okada, Ryo Takemura

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

The purpose of this note is to give a demonstration of the completeness theorem of type assignment system for λ-terms of [Hindley 83] and [Coquand 05] with two directions of slight extensions. Firstly, using the idea of [Okada 96], [Okada-Terui 99] and [Hermant-Okada 07], we extend their completeness theorem to a stronger form which implies a normal form theorem. Secondly, we extend the simple type (the implicational fragment of intuitionistic logic) framework of [Hindley 83] and [Coquand 05] to a linear (affine) types (the {-o, &, →;}-fragment of affine logic) framework of [Laird 03, 05].

本文言語English
ホスト出版物のタイトルRewriting, Computation and Proof - Essays Dedicated to Jean-Pierre Jouannaud on the Occasion of His 60th Birthday
編集者Hubert Comon-Lundh, Claude Kirchner, Helene Kirchner
ページ167-181
ページ数15
出版ステータスPublished - 2007 12月 1

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
4600 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Remarks on semantic completeness for proof-terms with Laird's dual affine/intuitionistic λ-calculus」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル