Rethinking Image Super-Resolution from Training Data Perspectives

Go Ohtani, Ryu Tadokoro, Ryosuke Yamada, Yuki M. Asano, Iro Laina, Christian Rupprecht, Nakamasa Inoue, Rio Yokota, Hirokatsu Kataoka, Yoshimitsu Aoki

研究成果: Conference contribution

抄録

In this work, we investigate the understudied effect of the training data used for image super-resolution (SR). Most commonly, novel SR methods are developed and benchmarked on common training datasets such as DIV2K and DF2K. However, we investigate and rethink the training data from the perspectives of diversity and quality, thereby addressing the question of “How important is SR training for SR models?”. To this end, we propose an automated image evaluation pipeline. With this, we stratify existing high-resolution image datasets and larger-scale image datasets such as ImageNet and PASS to compare their performances. We find that datasets with (i) low compression artifacts, (ii) high within-image diversity as judged by the number of different objects, and (iii) a large number of images from ImageNet or PASS all positively affect SR performance. We hope that the proposed simple-yet-effective dataset curation pipeline will inform the construction of SR datasets in the future and yield overall better models. Code is available at: https://github.com/gohtanii/DiverSeg-dataset.

本文言語English
ホスト出版物のタイトルComputer Vision – ECCV 2024 - 18th European Conference, Proceedings
編集者Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, Gül Varol
出版社Springer Science and Business Media Deutschland GmbH
ページ19-36
ページ数18
ISBN(印刷版)9783031726422
DOI
出版ステータスPublished - 2025
イベント18th European Conference on Computer Vision, ECCV 2024 - Milan, Italy
継続期間: 2024 9月 292024 10月 4

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
15075 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference18th European Conference on Computer Vision, ECCV 2024
国/地域Italy
CityMilan
Period24/9/2924/10/4

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータサイエンス一般

フィンガープリント

「Rethinking Image Super-Resolution from Training Data Perspectives」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル