Rgb-d image inpainting using generative adversarial network with a late fusion approach

Ryo Fujii, Ryo Hachiuma, Hideo Saito

研究成果: Conference contribution

3 被引用数 (Scopus)

抄録

Diminished reality is a technology that aims to remove objects from video images and fills in the missing region with plausible pixels. Most conventional methods utilize the different cameras that capture the same scene from different viewpoints to allow regions to be removed and restored. In this paper, we propose an RGB-D image inpainting method using generative adversarial network, which does not require multiple cameras. Recently, an RGB image inpainting method has achieved outstanding results by employing a generative adversarial network. However, RGB inpainting methods aim to restore only the texture of the missing region and, therefore, does not recover geometric information (i.e, 3D structure of the scene). We expand conventional image inpainting method to RGB-D image inpainting to jointly restore the texture and geometry of missing regions from a pair of RGB and depth images. Inspired by other tasks that use RGB and depth images (e.g., semantic segmentation and object detection), we propose late fusion approach that exploits the advantage of RGB and depth information each other. The experimental results verify the effectiveness of our proposed method.

本文言語English
ホスト出版物のタイトルAugmented Reality, Virtual Reality, and Computer Graphics - 7th International Conference, AVR 2020, Proceedings
編集者Lucio Tommaso De Paolis, Patrick Bourdot
出版社Springer Science and Business Media Deutschland GmbH
ページ440-451
ページ数12
ISBN(印刷版)9783030584641
DOI
出版ステータスPublished - 2020
イベント7th International Conference on Augmented Reality, Virtual Reality, and Computer Graphics, AVR 2020 - Lecce, Italy
継続期間: 2020 9月 72020 9月 10

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
12242 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference7th International Conference on Augmented Reality, Virtual Reality, and Computer Graphics, AVR 2020
国/地域Italy
CityLecce
Period20/9/720/9/10

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Rgb-d image inpainting using generative adversarial network with a late fusion approach」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル